Preliminary marker-based validation of a novel biplane fluoroscopy system

نویسندگان

  • Joseph M Iaquinto
  • Richard Tsai
  • Michael Fassbind
  • David R Haynor
  • Bruce J Sangeorzan
  • William R Ledoux
چکیده

Materials and methods Biplane Fluoroscopy System: The system consists of two Philips BV Pulsera C-arms set in custom frames around a raised floor with a radiolucent imaging area. X-ray images are captured with high speed (1000fps) cameras. Validation Object: 1.6mm tantalum beads were placed in a machined block (wand) then measured to 7 microns with a Coordinate Measuring Machine to determine their centroid location. The wand was translated and rotated via a 1 micron precision stepper-motor for static validation, as well as manually swept through the field of view at ~0.5m/s for dynamic. Static Accuracy and Precision: accuracy was defined as the RMS error between the translation of the stepper-motor and the measured movement of the beads; precision is defined as the standard deviation of the bead locations. For rotation, accuracy was defined as the RMS error between the applied and measured rotation of the wand.

منابع مشابه

Preliminary model-based validation of a biplane fluoroscopy system

Background Biplane fluoroscopy can directly track the motion of bones and therefore measure joint kinematics. Our prior markerbased work has demonstrated the ability of our system to accurately and precisely track the motion of known objects (i.e., tantalum beads) [1]. In this study, we present the preliminary bone-based validation of our system by tracking the bones of the foot from cadaveric ...

متن کامل

Marker-based validation of a biplane fluoroscopy system for quantifying foot kinematics.

INTRODUCTION Radiostereometric analysis has demonstrated its capacity to track precise motion of the bones within a subject during motion. Existing devices for imaging the body in two planes are often custom built systems; we present here the design and marker-based validation of a system that has been optimized to image the foot during gait. METHODS Mechanical modifications were made to pair...

متن کامل

Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds.

While measuring knee motion in all six degrees of freedom is important for understanding and treating orthopaedic knee pathologies, traditional motion capture techniques lack the required accuracy. A variety of model-based biplane fluoroscopy techniques have been developed with sub-millimeter accuracy. However, no studies have statistically evaluated the consistency of the accuracy across motio...

متن کامل

Quantifying cross-scatter contamination in biplane fluoroscopy motion analysis systems.

Biplane fluoroscopy is used for dynamic in vivo three-dimensional motion analysis of various joints of the body. Cross-scatter between the two fluoroscopy systems may limit tracking accuracy. This study measured the magnitude and effects of cross-scatter in biplane fluoroscopic images. Four cylindrical phantoms of 4-, 6-, 8-, and 10-in. diameter were imaged at varying kVp levels to determine th...

متن کامل

Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings.

BACKGROUND CONTEXT Previous research has quantified cervical spine motion with conventional measurement techniques (eg, cadaveric studies, motion capture systems, and fluoroscopy), but these techniques were not designed to accurately measure three-dimensional (3D) dynamic cervical spine motion under in vivo conditions. PURPOSE The purposes of this study were to characterize the accuracy of mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012